Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Holm multiple correction for large-scale gene-shape association mapping.

Identifieur interne : 002188 ( Main/Exploration ); précédent : 002187; suivant : 002189

Holm multiple correction for large-scale gene-shape association mapping.

Auteurs : Guifang Fu ; Garrett Saunders ; John Stevens

Source :

RBID : pubmed:25079623

Descripteurs français

English descriptors

Abstract

BACKGROUND

Linkage Disequilibrium (LD) is a powerful approach for the identification and characterization of morphological shape, which usually involves multiple genetic markers. However, multiple testing corrections substantially reduce the power of the associated tests. In addition, the principle component analysis (PCA), used to quantify the shape variations into several principal phenotypes, further increases the number of tests. As a result, a powerful multiple testing correction for simultaneous large-scale gene-shape association tests is an essential part of determining statistical significance. Bonferroni adjustments and permutation tests are the most popular approaches to correcting for multiple tests within LD based Quantitative Trait Loci (QTL) models. However, permutations are extremely computationally expensive and may mislead in the presence of family structure. The Bonferroni correction, though simple and fast, is conservative and has low power for large-scale testing.

RESULTS

We propose a new multiple testing approach, constructed by combining an Intersection Union Test (IUT) with the Holm correction, which strongly controls the family-wise error rate (FWER) without any additional assumptions on the joint distribution of the test statistics or dependence structure of the markers. The power improvement for the Holm correction, as compared to the standard Bonferroni correction, is examined through a simulation study. A consistent and moderate increase in power is found under the majority of simulated circumstances, including various sample sizes, Heritabilities, and numbers of markers. The power gains are further demonstrated on real leaf shape data from a natural population of poplar, Populus szechuanica var tietica, where more significant QTL associated with morphological shape are detected than under the previously applied Bonferroni adjustment.

CONCLUSION

The Holm correction is a valid and powerful method for assessing gene-shape association involving multiple markers, which not only controls the FWER in the strong sense but also improves statistical power.


DOI: 10.1186/1471-2156-15-S1-S5
PubMed: 25079623
PubMed Central: PMC4118635


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Holm multiple correction for large-scale gene-shape association mapping.</title>
<author>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
</author>
<author>
<name sortKey="Saunders, Garrett" sort="Saunders, Garrett" uniqKey="Saunders G" first="Garrett" last="Saunders">Garrett Saunders</name>
</author>
<author>
<name sortKey="Stevens, John" sort="Stevens, John" uniqKey="Stevens J" first="John" last="Stevens">John Stevens</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25079623</idno>
<idno type="pmid">25079623</idno>
<idno type="doi">10.1186/1471-2156-15-S1-S5</idno>
<idno type="pmc">PMC4118635</idno>
<idno type="wicri:Area/Main/Corpus">002063</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002063</idno>
<idno type="wicri:Area/Main/Curation">002063</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002063</idno>
<idno type="wicri:Area/Main/Exploration">002063</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Holm multiple correction for large-scale gene-shape association mapping.</title>
<author>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
</author>
<author>
<name sortKey="Saunders, Garrett" sort="Saunders, Garrett" uniqKey="Saunders G" first="Garrett" last="Saunders">Garrett Saunders</name>
</author>
<author>
<name sortKey="Stevens, John" sort="Stevens, John" uniqKey="Stevens J" first="John" last="Stevens">John Stevens</name>
</author>
</analytic>
<series>
<title level="j">BMC genetics</title>
<idno type="eISSN">1471-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping (MeSH)</term>
<term>Genetic Association Studies (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Populus (genetics)</term>
<term>Quantitative Trait Loci (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cartographie chromosomique (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Populus (génétique)</term>
<term>Études d'associations génétiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Genetic Association Studies</term>
<term>Linkage Disequilibrium</term>
<term>Models, Genetic</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie chromosomique</term>
<term>Déséquilibre de liaison</term>
<term>Locus de caractère quantitatif</term>
<term>Modèles génétiques</term>
<term>Études d'associations génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Linkage Disequilibrium (LD) is a powerful approach for the identification and characterization of morphological shape, which usually involves multiple genetic markers. However, multiple testing corrections substantially reduce the power of the associated tests. In addition, the principle component analysis (PCA), used to quantify the shape variations into several principal phenotypes, further increases the number of tests. As a result, a powerful multiple testing correction for simultaneous large-scale gene-shape association tests is an essential part of determining statistical significance. Bonferroni adjustments and permutation tests are the most popular approaches to correcting for multiple tests within LD based Quantitative Trait Loci (QTL) models. However, permutations are extremely computationally expensive and may mislead in the presence of family structure. The Bonferroni correction, though simple and fast, is conservative and has low power for large-scale testing.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We propose a new multiple testing approach, constructed by combining an Intersection Union Test (IUT) with the Holm correction, which strongly controls the family-wise error rate (FWER) without any additional assumptions on the joint distribution of the test statistics or dependence structure of the markers. The power improvement for the Holm correction, as compared to the standard Bonferroni correction, is examined through a simulation study. A consistent and moderate increase in power is found under the majority of simulated circumstances, including various sample sizes, Heritabilities, and numbers of markers. The power gains are further demonstrated on real leaf shape data from a natural population of poplar, Populus szechuanica var tietica, where more significant QTL associated with morphological shape are detected than under the previously applied Bonferroni adjustment.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The Holm correction is a valid and powerful method for assessing gene-shape association involving multiple markers, which not only controls the FWER in the strong sense but also improves statistical power.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25079623</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 1</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genetics</Title>
<ISOAbbreviation>BMC Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Holm multiple correction for large-scale gene-shape association mapping.</ArticleTitle>
<Pagination>
<MedlinePgn>S5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2156-15-S1-S5</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Linkage Disequilibrium (LD) is a powerful approach for the identification and characterization of morphological shape, which usually involves multiple genetic markers. However, multiple testing corrections substantially reduce the power of the associated tests. In addition, the principle component analysis (PCA), used to quantify the shape variations into several principal phenotypes, further increases the number of tests. As a result, a powerful multiple testing correction for simultaneous large-scale gene-shape association tests is an essential part of determining statistical significance. Bonferroni adjustments and permutation tests are the most popular approaches to correcting for multiple tests within LD based Quantitative Trait Loci (QTL) models. However, permutations are extremely computationally expensive and may mislead in the presence of family structure. The Bonferroni correction, though simple and fast, is conservative and has low power for large-scale testing.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We propose a new multiple testing approach, constructed by combining an Intersection Union Test (IUT) with the Holm correction, which strongly controls the family-wise error rate (FWER) without any additional assumptions on the joint distribution of the test statistics or dependence structure of the markers. The power improvement for the Holm correction, as compared to the standard Bonferroni correction, is examined through a simulation study. A consistent and moderate increase in power is found under the majority of simulated circumstances, including various sample sizes, Heritabilities, and numbers of markers. The power gains are further demonstrated on real leaf shape data from a natural population of poplar, Populus szechuanica var tietica, where more significant QTL associated with morphological shape are detected than under the previously applied Bonferroni adjustment.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The Holm correction is a valid and powerful method for assessing gene-shape association involving multiple markers, which not only controls the FWER in the strong sense but also improves statistical power.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Guifang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saunders</LastName>
<ForeName>Garrett</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stevens</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genet</MedlineTA>
<NlmUniqueID>100966978</NlmUniqueID>
<ISSNLinking>1471-2156</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056726" MajorTopicYN="N">Genetic Association Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="Y">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25079623</ArticleId>
<ArticleId IdType="pii">1471-2156-15-S1-S5</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2156-15-S1-S5</ArticleId>
<ArticleId IdType="pmc">PMC4118635</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Biotechnol. 1998 Dec;9(6):578-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9889136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Med. 2014 May 20;33(11):1946-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24399688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2000 Aug;67(2):383-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):928-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 10;411(6834):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11346797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2001 Jul;69(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11410837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Jul 24;11(14):R576-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11509259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Jan;18(1):19-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11750696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Jan;3(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Apr;3(4):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Aug 1;418(6897):544-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Epidemiol. 2002 Oct;23(3):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12384975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Apr;163(4):1533-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2004 Apr;74(4):765-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14997420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2004 Oct;75(4):669-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Med. 2004 Oct 15;23(19):3033-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1975 Oct;8(2):184-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1198351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1987 Oct;117(2):331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3666445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Public Health. 1996 May;86(5):726-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8629727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2004 Dec;5(4):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15606972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Feb 15;24(4):537-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18203773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Epidemiol. 2008 May;32(4):361-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18271029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Biol Med Model. 2008;5:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18416827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Apr;5(4):e1000456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19381255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2005;6 Suppl 1:S78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16451692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Biol Med Model. 2010;7:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20594352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Mar;175(3):289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20095825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Jul;20(14):2985-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21668551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Jun;110(6):511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1999 Jun;64(6):1728-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330361</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
<name sortKey="Saunders, Garrett" sort="Saunders, Garrett" uniqKey="Saunders G" first="Garrett" last="Saunders">Garrett Saunders</name>
<name sortKey="Stevens, John" sort="Stevens, John" uniqKey="Stevens J" first="John" last="Stevens">John Stevens</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002188 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002188 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25079623
   |texte=   Holm multiple correction for large-scale gene-shape association mapping.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25079623" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020